4th Grade Math Homework
(Standards Based)
created by Lara Dean

Over the years I have recognized the need for a homework program that reviewed the Standards and Objectives of the Utah State Core Curriculum. I have tried many mixed review workbooks, but none of them were based upon Utah’s Core. There was either more than or not enough of what my students needed.

Last year the Salt Lake City School District created a pacing map for teachers to follow. The pacing map has helped to ensure all of the Utah Core Standards and Objectives in Mathematics are covered before state testing. It also made it possible for students to transfer between schools without disrupting their education.

Based upon this pacing map, I have created monthly concepts review sheets. Each month I focus my instruction, assignments, and activities around the concepts outlined on the pacing map. At the end of each month, and only after the concepts have been taught, I work through the first homework sheet for that month on the overhead as a whole class activity. (The homework sheets have the month name for traditional schools and the month number for year round schools. They correspond with the pacing map). After we work through the first sheet together, it goes home for homework. The review sheet for that month is then sent home every week.

At the end of each month I add a new review sheet for the students. By the end of December, the class gets a review of September, October, November, and December every week. By the end of April, when it is time to review for CRT’s, they are getting a thorough review of the Utah Math Core every two weeks.

Most of the concepts from the core are in here. One thing missing is the opportunity for the students to “model” or “demonstrate” concepts with manipulatives.
Benefits of this Homework Program

• The students get continuous review on the concepts for their grade level based upon the Utah State Core Standards and Objectives.
• There are numerous opportunities for re-teaching.
• It is easy to assess what new students know and what they still need to learn.
• The homework cycles in a way that helps ELL students become familiar not only with the computation, but also the vocabulary and concepts.
• The homework sheets provide a focus for what I need to be covered and/or reviewed.
• I have included Target Vocabulary. Difficult concepts or concepts which may be new for the students are in bold type for emphasis.
• Certain concepts have definitions or examples with them so the students remember what to do when they get home. Parents have found this helpful to them too.
• Homework can be done with little or no help from home because it is a review of what has already been taught.
• The students remember concepts at testing time because they have reviewed them at least every other week after initially learning them.
• The worksheets come in handy when there is a guest teacher.
• The worksheets cover most concepts in the Core, not just the concepts that are likely to be on the test. (Hopefully this will make teachers in the next grade happy!)
• You can use the previous year’s worksheets as a review at the beginning of the year.
• There are different kinds of problems: multiple choice, computation, short answer, oral language (poems), comparisons, and opportunities to illustrate their thinking with pictorial representations.
• They can be used as pre and post-tests.
• The variety of problems and format on each page is just enough to keep the concepts fresh in the students’ minds.
• Once all 12 worksheets have been used for a certain month, you can start at the beginning and reuse them. The students don’t notice.

Please note—this was designed to be given as homework after the concepts have been taught in the classroom. It is not intended to be the classroom instruction.

To find the pacing map for your grade go to:

http://www.slc.k12.ut.us/depts/learningsvcs/curr/math/

1) Click on the name Kim Colton at the top of the page.
2) Under “Kim’s Page” click on SFAW Pacing Maps
3) Click on your grade level
Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: __

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other___________
 b) estimating d) a paper and pencil

How do you write the number 8 tenths?
 a) 80
 b) .8
 c) 8

Write the whole number that comes between these:
 566 _____ 568

Compare these two expressions using < > or =
 7 + 2 ______ 4 + 8

Look at the numeral 9,899
What is 100 more? __________ What is 100 less? __________
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!

Area … oh area …
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!

This rectangle has an area of 18.

What is the length of each side? _____, _____, _____, ______

Solve this equation by making both expressions equal.

\[17 + \Box = 13 + 19 \]
(Hint--find the total of one side to help you figure out the other!)

Find the sums:

\[
\begin{array}{ccc}
7,878 & +8,484 & 2,121 \\
 & +6,565 & \\
\end{array}
\]

Write 56,565 in expanded form: __________ + __________ + _____ + _____ + _____

Which digit is in the one's place? _____ What is its value? ______________

Which digit is in the ten's place? _____ What is its value? ______________

Which digit is in the hundred's place? _____ What is its value? ______________

Which digit is in the thousand's place? _____ What is its value? ______________

Which digit is in the ten thousand's place? _____ What is its value? ______________

© 2004 Lara Dean
Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: ________________________________
 __

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other ____________
 b) estimating d) a paper and pencil

How do you read the number 45,641?
 a) forty-five and six hundred forty one
 b) forty-five thousand and six hundred and forty one
 c) forty-five thousand, six hundred forty one

Put the numbers 7, 15, 12, 13, and 11 in order on the number line:

1 10 20

Compare these two expressions using < > or =

6 + 8 4 + 9

Look at the numeral 5,601

What is 100 more? __________ What is 100 less? __________
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!

Area … oh area …
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!

This rectangle has a perimeter of 6. What is the area? _____
(Hint--first figure out how long each side is, then multiply to find the area)

Solve this **equation** by making both **expressions** equal.

\[8 + \bigcirc = 6 + 12 \]
(Hint--find the total of one side to help you figure out the other!)

Find the **sum**:

\[
\begin{array}{c}
3,258 \\
+9,254 \\
\end{array}
\]

Find the **difference**:

\[
\begin{array}{c}
9,587 \\
-2,253 \\
\end{array}
\]

Write 52,352 in **expanded form**:

\[\underline{} + \underline{} + \underline{} + \underline{} + \underline{} \]

Which digit is in the **one's** place?______ What is its value?________________
Which digit is in the **ten's** place?_______ What is its value?________________
Which digit is in the **hundred's** place?_____ What is its value?________________
Which digit is in the **thousand's** place?____ What is its value?________________
Which digit is in the **ten thousand's** place?____ What is its value?________________
Name_________________ September Concepts Review (Month 1) #3

Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: __

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other___________
 b) estimating d) a paper and pencil

How do you write the number six tenths?
 a) .6
 b) 60
 c) 610

Write the whole number that comes between these:

 578 _______ 580

Compare these two expressions using < > or =

 8 + 4 5 + 5

Look at the numeral 8,452

What is 100 more? ___________ What is 100 less? ___________
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!
Area … oh area …
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!

This rectangle has an area of 18.

What is the length of each side? _____, _____, _____, _____

Solve this equation by making both expressions equal.

\[15 + \quad = 14 + 9 \]

(Hint--find the total of one side to help you figure out the other!)

Find the sums:

\[
\begin{align*}
8,454 & \quad +5,215 \\
2,154 & \quad +8,988
\end{align*}
\]

Write 25,151 in expanded form: __________ + __________ + ______ + ______ + ______

Which digit is in the one’s place?______ What is its value?____________________
Which digit is in the ten’s place?______ What is its value?____________________
Which digit is in the hundred’s place?______ What is its value?____________________
Which digit is in the thousand’s place?______ What is its value?____________________
Which digit is in the ten thousand’s place?____ What is its value?____________________

© 2004 Lara Dean
Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: _____________________________

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other__________
 b) estimating d) a paper and pencil

How do you read the number 48,485?
 a) forty-eight thousand, four hundred eighty-five
 b) forty-eight four hundred eighty five
 c) forty-eight thousand, four hundred and eighty-five

Put the numbers 1,000, 350 and 800 in order on the number line:

```
50 200 500 650 900
```

Compare these two expressions using < > or =

```
11 - 2   4 + 11
```

Look at the numeral 8,777.

What is 100 more? _________ What is 100 less? _________
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!

Area … oh area …
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!

This rectangle has a perimeter of 10. What is the area? ______
(Hint--first figure out how long each side is, then multiply to find the area)

Solve this **equation** by making both **expressions** equal.

\[15 + \, \boxed{} \, = 8 + 14 \]
(Hint--find the total of one side to help you figure out the other!)

Find the **sum**:
\[
\begin{array}{c}
8,454 \\
+3,265
\end{array}
\]

Find the **difference**:
\[
\begin{array}{c}
9,877 \\
-4,545
\end{array}
\]

Write 54,212 in **expanded form**:

\[
\text{__________} + \text{__________} + \text{_______} + \text{______} + \text{______}
\]

Which **digit** is in the **one's** place?_______ What is its **value**?____________________
Which **digit** is in the **ten's** place?_______ What is its **value**?____________________
Which **digit** is in the **hundred's** place?_____ What is its **value**?____________________
Which **digit** is in the **thousand's** place?____ What is its **value**?____________________
Which **digit** is in the **ten thousand's** place?____ What is its **value**?____________________

© 2004 Lara Dean
Name______________ September Concepts Review (Month 1) #5

Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: _____________________________

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other_____________
 b) estimating d) a paper and pencil

How do you write the number 4 tenths?
 a) 40
 b) .4
 c) 4

Write the whole number that comes between these:
 527 ______ 529

Compare these two expressions using < > or =
 7 + 8 < > 6 + 9

Look at the numeral 2,000

What is 100 more? ___________ What is 100 less? ___________
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!

Area ... oh area ...
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!

This rectangle has an area of 8.

What is the length of each side? ______, ______, ______, ______

Solve this **equation** by making both **expressions** equal.

\[12 + \quad = 2 + 20 \]

(Hint--find the total of one side to help you figure out the other!)

Find the sums:

\[
\begin{array}{cc}
9,647 & 7,965 \\
+7,526 & +7,526 \\
\end{array}
\]

Write 21, 872 in **expanded form**:

\[
\quad + \quad + \quad + \quad + \quad
\]

Which digit is in the **one's** place? ______
What is its value? ______________________

Which digit is in the **ten's** place? ______
What is its value? ______________________

Which digit is in the **hundred's** place? _____
What is its value? ______________________

Which digit is in the **thousand's** place? ____
What is its value? ______________________

Which digit is in the **ten thousand's** place? _____
What is its value? ______________________

© 2004 Lara Dean
Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

2) Which of these strategies did they use to help them?
 a) mental math
 b) estimating
 c) a calculator
 d) a paper and pencil
 e) other

How do you read the number 50,050?
 a) fifty thousand, five hundred
 b) fifty thousand, fifty
 c) fifty thousand, five

Put the numbers 200, 100, 40 and 150 in order on the number line:

```
10     20     50     90     160
```

Compare these two expressions using < > or =

\[8 + 8 \quad \bigcirc \quad 20 - 12 \]

Look at the numeral 8,799.

What is 100 more? ________ What is 100 less? ________

© 2004 Lara Dean
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!

Area … oh area …
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!

This rectangle has a perimeter of 40. What is the area? ______
(Hint--first figure out how long each side is, then multiply to find the area)

Solve this equation by making both expressions equal.

10 + ______ = 14 + 17
(Hint--find the total of one side to help you figure out the other!)

Find the sum:

| 5,454 | Find the difference:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,125</td>
<td>6,232 - 1,215</td>
</tr>
</tbody>
</table>

Write 63,121 in expanded form: ____________ + ____________ + ______ + ______ + ______

Which digit is in the one's place?_______
What is its value?_____________________

Which digit is in the ten's place?_______
What is its value?_____________________

Which digit is in the hundred's place?____
What is its value?_____________________

Which digit is in the thousand's place?______
What is its value?_____________________

Which digit is in the ten thousand's place?____
What is its value?_____________________

© 2004 Lara Dean
Name_________________ September Concepts Review (Month 1) #7

Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: ________________________________
 __

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other__________
 b) estimating d) a paper and pencil

How do you write the number 1 tenth?
 a) 1.1
 b) .1
 c) .01

Write the whole number that comes between these:

 199 _______ 201

Compare these two expressions using < > or =

 6 + 11 \(\bigcirc \) 9 + 8

Look at the numeral 2,025

What is 100 more? __________ What is 100 less? __________
Perimeter

you get around a lot.

I've got to add up all your sides

To see just how much length you've got!

Area

... oh area ...

I know that you're inside!

I will multiply two touching sides

To see how much you're trying to hide!

This rectangle has an area of 18.

<table>
<thead>
<tr>
<th>8 +</th>
<th>= 9 + 13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Hint--find the total of one side to help you figure out the other!)

What is the length of each side? _____, _____, _____, _____

Find the sums:

```
5,254
+3,258
```

```
1,215
+2,326
```

Write 15,253 in **expanded form:** __________ + __________ + ______ + ______ + ______

Which **digit** is in the **one's** place?_______ What is its **value**?____________________

Which **digit** is in the **ten's** place?_______ What is its **value**?____________________

Which **digit** is in the **hundred's** place?_____ What is its **value**?____________________

Which **digit** is in the **thousand's** place?_____ What is its **value**?____________________

Which **digit** is in the **ten thousand's** place?____ What is its **value**?____________________
1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: _____________________________

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other___________
 b) estimating d) a paper and pencil

How do you read the number 10,110?
 a) ten thousand, one hundred and one
 b) ten thousand, one hundred ten
 c) ten thousand, eleven

Put the numbers 6,000, 4,800 and 5,700 in order on the number line:

| 4,100 | | | 5,000 | 5,400 |

Compare these two expressions using < > or =

 12 - 9 1 + 3

Look at the numeral 1,234.

What is 100 more? __________ What is 100 less? __________
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!

Area … oh area …
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!

This rectangle has a perimeter of 30. What is the area? _____
(Hint--first figure out how long each side is, then multiply to find the area)

Solve this equation by making both expressions equal.

\[16 + \underline{} = 19 + 14 \]
(Hint--find the total of one side to help you figure out the other!)

Find the sum:

\[
\begin{array}{c}
3,258 \\
+1,258 \\
\end{array}
\]

Find the difference:

\[
\begin{array}{c}
8,765 \\
-2,364 \\
\end{array}
\]

Write 41,258 in expanded form: \underline{} + \underline{} + \underline{} + \underline{} + \underline{}

Which digit is in the one's place? _____
What is its value? _______________

Which digit is in the ten's place? _____
What is its value? _______________

Which digit is in the hundred's place? _____
What is its value? _______________

Which digit is in the thousand's place? _____
What is its value? _______________

Which digit is in the ten thousand's place? _____
What is its value? _______________
Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

__
__

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other__________
 b) estimating d) a paper and pencil

How do you write the number two tenths?
 a) 2.2
 b) .02
 c) .2

Write the whole number that comes between these:

 209 ______ 211

Compare these two expressions using < > or =

 12 + 4 ∘ 16 + 1

Look at the numeral 2,250

What is 100 more? __________ What is 100 less? __________
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!

Area ... oh area ...
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!

This rectangle has an area of 50.

What is the length of each side? _____, _____, _____, _____

Solve this equation by making both expressions equal.

8 + ___ = 14 + 7

(Hint--find the total of one side to help you figure out the other!)

Find the sums:

3,698 + 1,258 + 4,589

7,852

Write 14,789 in expanded form: ______________ + __________ + ______ + _____ + ______

Which digit is in the one's place? _____ What is its value? ________________________

Which digit is in the ten's place? _____ What is its value? ________________________

Which digit is in the hundred's place? _____ What is its value? ________________________

Which digit is in the thousand's place? ____ What is its value? ________________________

Which digit is in the ten thousand's place? ____ What is its value? ________________________

© 2004 Lara Dean
Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: _____________________________

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other___________
 b) estimating d) a paper and pencil

How do you read the number 25,520?
 a) twenty-five thousand, two hundred fifty
 b) twenty-five thousand, five hundred twenty
 c) twenty-five thousand, five hundred two

Put the numbers 1.9, .9, 1.1, and .3 in order on the number line:

0 .5

 | | | | | |
 1 2

Compare these two expressions using < > or =

11 - 7 8 + 6

Look at the numeral 9,899.

What is 100 more? _________ What is 100 less? _________
This square has a perimeter of 16. What is the area? ______

(Hint--first figure out how long each side is, then multiply to find the area)

Solve this equation by making both expressions equal.

\[14 + \bigcirc = 17 + 13 \]

(Hint--find the total of one side to help you figure out the other!)

Find the sum:

\[
\begin{array}{c}
8,484 \\
+2,587 \\
\hline
11,071
\end{array}
\]

Find the difference:

\[
\begin{array}{c}
3,258 \\
-1,987 \\
\hline
1,271
\end{array}
\]

Write 58,125 in expanded form: ____________+__________+_______+______+______

Which digit is in the one's place?_______ What is its value?____________________
Which digit is in the ten's place?_______ What is its value?____________________
Which digit is in the hundred's place?____ What is its value?____________________
Which digit is in the thousand's place?___ What is its value?____________________
Which digit is in the ten thousand's place?____ What is its value?____________________
1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

2) Which of these strategies did they use to help them?
 a) mental math
 b) estimating
 c) a calculator
 d) a paper and pencil
 e) other

How do you write the number 7 tenths?
 a) 70
 b) .7
 c) 7.10

Write the whole number that comes between these:

 899 _______ 901

Compare these two expressions using < > or =

 14 + 7 16 + 4

Look at the numeral 9,899

What is 100 more? _________
What is 100 less? _________
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!

Area ... oh area ...
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!

This square has an area of 49.

What is the length of each side? _____, _____, _____, _____

Solve this equation by making both expressions equal.

\[
16 + _ = 13 + 14
\]

(Hint--find the total of one side to help you figure out the other!)

Find the sums:

\[
\begin{align*}
2,584 + 9,658 & = 8,258 + 4,654 \\
\end{align*}
\]

Write 75,375 in expanded form: ___________ + ___________ + _______ + _______ + _______

Which digit is in the one's place? _____
What is its value? ______________________

Which digit is in the ten's place? _____
What is its value? ______________________

Which digit is in the hundred's place? _____
What is its value? ______________________

Which digit is in the thousand's place? _____
What is its value? ______________________

Which digit is in the ten thousand's place? _____
What is its value? ______________________

© 2004 Lara Dean
Name_________________ September Concepts Review (Month 1) #12

Number Sense and Review

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: ________________________________
__

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) other___________
 b) estimating d) a paper and pencil

How do you read the number 50,250?
 a) fifty thousand, twenty-five
 b) fifty thousand, and twenty-five
 c) fifty thousand, two hundred fifty

Put the numbers 9, 9.9, 8.3, and 9.1 in order on the number line:

\[8\quad 8.9\quad 9\quad 9.1\]

Compare these two expressions using < > or =

\[11 - 4 \quad \bigcirc \quad 3 + 8\]

Look at the numeral 1,254.

What is 100 more? _______ What is 100 less? _______

© 2004 Lara Dean
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!

Area … oh area …
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!

This square has a perimeter of 12. What is the area? ______
(Hint--first figure out how long each side is, then multiply to find the area)

Solve this equation by making both expressions equal.

14 + 13 = 17 + 13
(Hint--find the total of one side to help you figure out the other!)

Find the sum:

| 2,582 |
| +1,321 |

Find the difference:

| 3,698 |
| -1,478 |

Write 15,951 in expanded form: ____________ + ____________ + _______ + _______ + _______

Which digit is in the one's place?_______ What is its value?_____________________

Which digit is in the ten's place?_______ What is its value?_____________________

Which digit is in the hundred's place?_____ What is its value?_____________________

Which digit is in the thousand's place?____ What is its value?_____________________

Which digit is in the ten thousand's place?____ What is its value?_____________________

© 2004 Lara Dean
Subtraction and Geometry

Look at the numeral 2,254

What is 1,000 more? _________ What is 1,000 less? _________

Find the differences:

\[
\begin{array}{cc}
8,254 & 5,147 \\
-2,352 & -3,256
\end{array}
\]

Compare these two expressions using < > or =

\[
16 - 12 \quad \bigcirc \quad 4 + 3
\]

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? _______________
Draw 2 line segments on the grid using the coordinates:

1) 2,2 and 2,4
2) 4,2 and 4,4

This pair of line segments is:

a) parallel

b) intersecting

Solve this equation by making both expressions equal.

\[
12 - \bigcirc = 10 - 6
\]

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the table.

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

What pattern do you see?

Is it a growing pattern or a repeating pattern? ______________
Subtraction and Geometry

Look at the numeral 9,899

What is 1,000 more? _________ What is 1,000 less? _________

Find the differences:

\[
\begin{array}{ccc}
9,647 & -7,526 & 7,965 \\
-7,526 & & -7,526
\end{array}
\]

Compare these two expressions using < > or =

\[17 - 12 4 + 8\]

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? ________________

© 2004 Lara Dean
Draw 2 line segments on the grid using the coordinates:

1) 5,8 and 5,2
2) 4,5 and 6,5

This pair of line segments is:

a) parallel
b) intersecting

Solve this equation by making both expressions equal.

\[17 - \bigcirc = 20 - 6 \]

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the picture.

What pattern do you see?

Is it a growing pattern or a repeating pattern?
Subtraction and Geometry

Look at the numeral 6,614

What is 1,000 more? _________ What is 1,000 less? _________

Find the differences:

<table>
<thead>
<tr>
<th>5,875</th>
<th>8,458</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1,258</td>
<td>-6,256</td>
</tr>
</tbody>
</table>

Compare these two expressions using < > or =

19 - 7 6 + 8

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? _________________
Draw 2 line segments on the grid using the coordinates:

1) 1,1 and 3,1
2) 1,9 and 3,9

This pair of line segments is:

a) parallel
b) intersecting

Solve this equation by making both expressions equal.

15 - () = 10 - 4

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the following numbers:

6, 12, 18, 24, 30...

What pattern do you see?___

Is it a growing pattern or a repeating pattern? ________________
Subtraction and Geometry

Look at the numeral 3,251

What is 1,000 more? _________ What is 1,000 less? _________

Find the differences:

\[
\begin{align*}
4,258 & - 2,452 = 4,258 - 3,297 \\
\end{align*}
\]

Compare these two expressions using < > or =

\[
20 - 13 \bigcirc 4 + 7
\]

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? ________________
Draw 2 **line segments** on the **grid** using the **coordinates**:

1) 2,5 and 5,2
2) 2,2 and 5,5

This pair of line segments is:

a) **parallel**

b) **intersecting**

Solve this **equation** by making both **expressions** equal.

\[24 - \Box = 17 - 9\]

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the table.

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
</tr>
</tbody>
</table>

What pattern do you see?

Is it a **growing pattern** or a **repeating pattern**? ________________

© 2004 Lara Dean
Subtraction and Geometry

Look at the numeral 1,258

What is 1,000 more? _________
What is 1,000 less? _________

Find the differences:

\[
\begin{array}{cc}
3,258 & 5,258 \\
-2,151 & -4,147 \\
\end{array}
\]

Compare these two expressions using < > or =

\[
16 - 8 \quad \bigcirc \quad 3 + 11
\]

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? ________________
Draw 2 line segments on the grid using the coordinates:

1) 3,4 and 7,4
2) 4,5 and 5,5

This pair of line segments is:

a) parallel
b) intersecting

Solve this equation by making both expressions equal.

\[11 - \bigcirc = 14 - 6 \]

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the picture.

What pattern do you see?___

Is it a growing pattern or a repeating pattern? ________________
Subtraction and Geometry

Look at the numeral 2,468

What is 1,000 more? _______ What is 1,000 less? _______

Find the differences:

$$\begin{array}{ccc}
2,468 & 3,214 \\
-1,357 & -2,413 \\
\end{array}$$

Compare these two expressions using < > or =

$$14 - 8 \quad \square \quad 6 + 8$$

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? ________________
Draw 2 **line segments** on the **grid** using the **coordinates**:

1) 1,1 and 9,9
2) 1,9 and 9,1

This pair of line segments is:

a) **parallel**

b) **intersecting**

Solve this **equation** by making both **expressions** equal.

\[24 - \boxed{\quad} = 27 - 16\]

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the numbers below.

1, 4, 7, 10, 13…

What pattern do you see?

Is it a **growing pattern** or a **repeating pattern**? ______________
Subtraction and Geometry

Look at the numeral 2,452

What is 1,000 more? ________ What is 1,000 less? ________

Find the differences:

\[
\begin{array}{ccc}
2,459 & \quad & 2,751 \\
-1,368 & \quad & -1,927 \\
\end{array}
\]

Compare these two expressions using < > or =

\[11 - 9 \quad \bigcirc \quad 4 + 7\]

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? ________________
Draw 2 line segments on the grid using the coordinates:

1) 2,2 and 2,4
2) 4,2 and 4,4

This pair of line segments is:
a) parallel
b) intersecting

Solve this equation by making both expressions equal.

12 - □ = 10 - 6

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the table.

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>

What pattern do you see?

Is it a growing pattern or a repeating pattern? ________________
Subtraction and Geometry

Look at the numeral 5,284

What is 1,000 more? _________ What is 1,000 less? _________

Find the differences:

\[
\begin{array}{cc}
3,329 & 2,751 \\
-1,353 & -2,499
\end{array}
\]

Compare these two expressions using < > or =

\[
24 - 12 \quad \bigcirc \quad 5 + 7
\]

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? _________________
Draw 2 line segments on the grid using the coordinates:

1) 1,5 and 3,2
2) 2,6 and 4,3

This pair of line segments is:

a) parallel
b) intersecting

Solve this equation by making both expressions equal.

\[17 - \bigcirc = 14 - 8 \]

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the picture.

What pattern do you see?

Is it a growing pattern or a repeating pattern?

Subtraction and Geometry

Look at the numeral 4,534

What is 1,000 more? _______ What is 1,000 less? _______

Find the differences:

\[
\begin{array}{cc}
5,403 & 5,896 \\
-4,828 & -1,452 \\
\end{array}
\]

Compare these two expressions using < > or =

\[19 - 8 \quad \bigcirc \quad 7 + 3\]

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? _______________
Draw 2 line segments on the grid using the coordinates:

1) 7,1 and 7,7
2) 6,7 and 8,7

This pair of line segments is:

a) parallel

b) intersecting

Solve this equation by making both expressions equal.

\[20 - \bigcirc = 10 - 3\]

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the numbers.

11, 77, 111, 777, 1111, 7777…

What pattern do you see?__________________________________
__

Is it a growing pattern or a repeating pattern? _____________
Subtraction and Geometry

Look at the numeral 3,258

What is 1,000 more? _______ What is 1,000 less? _______

Find the differences:

\[
\begin{array}{cc}
7,391 & 8,024 \\
-3,791 & -5,870 \\
\end{array}
\]

Compare these two expressions using < > or =

\[
23 - 8 \quad \text{circled} \quad 17 + 13
\]

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? ________________
Draw 2 line segments on the grid using the coordinates:

1) 2,2 and 2,4
2) 4,2 and 4,4

This pair of line segments is:

a) parallel
b) intersecting

Solve this equation by making both expressions equal.

\[24 - \bigcirc = 19 - 7 \]

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the picture.

What pattern do you see?__________________________________

__

Is it a growing pattern or a repeating pattern? ________________
Subtraction and Geometry

Look at the numeral 2,462

What is 1,000 more? _________ What is 1,000 less? _________

Find the differences:

\[
\begin{array}{cc}
1,357 & 3,652 \\
-1,204 & -2,615 \\
\end{array}
\]

Compare these two expressions using < > or =

\[
22 - 9 \quad \bigcirc \quad 9 + 8
\]

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? _________________
Draw 2 line segments on the grid using the coordinates:

1) 3,3 and 6,6
2) 4,2 and 5,2

This pair of line segments is:

a) parallel
b) intersecting

Solve this equation by making both expressions equal.

\[
12 - \bigcirc = 14 - 6
\]

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the table.

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

What pattern do you see?

Is it a growing pattern or a repeating pattern? ________________
Subtraction and Geometry

Look at the numeral 1,600

What is 1,000 more? _________ What is 1,000 less? _________

Find the differences:

<table>
<thead>
<tr>
<th>3,543</th>
<th>2,816</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2,451</td>
<td>-1,535</td>
</tr>
</tbody>
</table>

Compare these two expressions using < > or =

27 - 19 16 + 8

Label each of the angles below as acute, right, or obtuse.

Are these two polygons similar or congruent? _________________
Draw 2 line segments on the grid using the coordinates:

1) 8,2 and 8,8
2) 1,7 and 10,7

This pair of line segments is:
a) parallel
b) intersecting

Solve this equation by making both expressions equal.

11 - \(\bigcirc \) = 13 - 9

(Hint--find the total of one side to help you figure out the other!)

Look for a pattern in the picture.

What pattern do you see?__________________________________

Is it a growing pattern or a repeating pattern? _______________

© 2004 Lara Dean
Name________________ November Concepts Review (Month 3) #1

Multiplication and Geometry

Here is an **array** showing 3 x 3. Is it a **square number**? Yes No

Draw an array or picture proving that the **algorithm** 12 x 2 = 24.

4 rows of 6 + 4 rows of 4 = 40

Which **multiplication sentence** could be used for this picture?

_______ x _______ = _________

10 x 23 = _________

What happens to the place value of the digits in the number 23 when it is multiplied by ten?

__
This picture of a ____________ is an example of a:

a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:

a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.

1, 3, 5, 7, _____, _____, _____

Is it a growing pattern or a repeating pattern? ________________

The Commutative Property states that changing the order of factors does not change the product.

3 x 8 = ________
8 x 3 = ________

Changing the grouping of factors does not change the product.

(2x3) x 1 = ________
2 x (3x1) = ________
Multiplication and Geometry

Here is an array showing 3 x 4. Is it a square number? Yes No

Draw an array or picture proving that the algorithm 6 x 8 = 48.

4 rows of 4 + 4 rows of 4 = 32

Which multiplication sentence could be used for this picture?

_______ x _______ = ________

10 x 15 = ________

What happens to the place value of the digits in the number 15 when it is multiplied by ten?_______________________________

This picture of a ______________ is an example of a:

a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:

a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.

2, 4, 6, 8, _____, _____, _____

Is it a growing pattern or a repeating pattern? ______________

The Commutative Property states that changing the order of factors does not change the product.

4 x 5 = ________
5 x 4 = ________

Changing the grouping of factors does not change the product.

(4x3) x 5 = ________
4 x (3x5) = ________
Multiplication and Geometry

Here is an array showing 4 x 4. Is it a square number? Yes No

Draw an array or picture proving that the algorithm 3 x 6 = 18.

2 rows of 6 + 2 rows of 4 = 20

Which multiplication sentence could be used for this picture?

_______ x _______ = _________

10 x 6 = ________

What happens to the place value of the digit in the number 6 when it is multiplied by ten? _________________________________
__
This picture of a ______________ is an example of a:
a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:
a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.
2, 20, 200, ______, _______, _______

Is it a growing pattern or a repeating pattern? ______________

The Commutative Property states that changing the order of factors does not change the product.
7 x 8 = _______
8 x 7 = _______

Changing the grouping of factors does not change the product.
(3x5) x 1 = _______
5 x (3x1) = _______
Multiplication and Geometry

Here is an array showing 2 x 2. Is it a square number? Yes No

Draw an array or picture proving that the algorithm 7 x 4 = 28.

3 rows of 5 + 3 rows of 3 = 24

Which multiplication sentence could be used for this picture?

_______ x _______ = ________

10 x 12 = ________

What happens to the place value of the digits in the number 12 when it is multiplied by ten?

__

__
This shape is an example of a:

a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:

a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.

1, 2, 4, 8, _____, _____, _____

Is it a growing pattern or a repeating pattern? ________________

The Commutative Property states that changing the order of factors does not change the product.

7 x 3 = ________
3 x 7 = ________

Changing the grouping of factors does not change the product.

(8x9) x 1 = ________
8 x (9x1) = ________
Here is an array showing 3 x 9. Is it a square number? Yes No

Draw an array or picture proving that the algorithm 5 x 3 = 15.

5 rows of 7 + 5 rows of 5 = 60

Which multiplication sentence could be used for this picture?

________ x _______ = ________

10 x 5 = ________

What happens to the place value of the digit in the number 5 when it is multiplied by ten?

© 2004 Lara Dean
This shape is an example of a:
a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:
a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.
1, 10, 100, 1000, __________, __________, __________

Is it a growing pattern or a repeating pattern? ______________

The Commutative Property states that changing the order of factors does not change the product.
6 x 4 = __________
4 x 6 = __________

Changing the grouping of factors does not change the product.
(4x6) x 2 = __________
4 x (6x2) = __________
Name________________ November Concepts Review (Month 3) #6

Multiplication and Geometry

Here is an **array** showing 5 x 5. Is it a **square number**? Yes No

![Array showing 5 x 5](image)

Draw an array or picture proving that the **algorithm** 10 x 4 = 40.

- 3 rows of 3 + 3 rows of 4 = 21
- $\times\times\times + \times\times\times = \times\times\times\times\times\times$
- $\times\times\times + \times\times\times = \times\times\times\times\times\times$

Which **multiplication sentence** could be used for this picture?

- _______ x _______ = ________

10 x 50 = ________

What happens to the place value of the digits in the number 50 when it is multiplied by ten?__
This shape is an example of a:

a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:

a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.

6, 12, 18, 20, _____, _____, _____

Is it a growing pattern or a repeating pattern? ____________

The Commutative Property states that changing the order of factors does not change the product.

6 x 5 = ______
5 x 6 = ______

Changing the grouping of factors does not change the product.

(7x8) x 2 = ______
7 x (8x2) = ______
Multiplication and Geometry

Here is an array showing 3×6. Is it a square number? Yes No

Draw an array or picture proving that the algorithm $2 \times 2 = 4$.

$8 \text{ rows of } 6 + 8 \text{ rows of } 2 = 64$

Which multiplication sentence could be used for this picture?

$\underline{_ _ _} \times \underline{_ _ _} = \underline{_ _ _ _ _ _ _ _ _}$

$10 \times 10 = \underline{_ _ _ _ _ _ _ _ _}$

What happens to the place value of the digits in the number 10 when it is multiplied by ten?

This picture of a ______________ is an example of a:
a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:
a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.
1, 10, 101, 1010, _____, _____, _____
Is it a **growing pattern** or a **repeating pattern**? ______________

The **Commutative Property** states that changing the order of factors does not change the **product**.

\[
5 \times 10 = ________ \\
10 \times 5 = ________
\]

Changing the **grouping** of factors does not change the product.

\[
(5 \times 10) \times 2 = ________ \\
5 \times (10 \times 2) = ________
\]
Multiplication and Geometry

Here is an array showing 6×6. Is it a square number? Yes No

Draw an array or picture proving that the algorithm $5 \times 2 = 10$.

5 rows of 5 + 5 rows of 5 = 50

Which multiplication sentence could be used for this picture?

_______ x _______ = ________

$10 \times 60 = ________$

What happens to the place value of the digits in the number 23 when it is multiplied by ten?

© 2004 Lara Dean
This picture of a ____________ is an example of a:

a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:

a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.

1, 2, 3, 4, 1, 2, 3, 4, ______, ______, ______

Is it a growing pattern or a repeating pattern? ______________

The Commutative Property states that changing the order of factors does not change the product.

2 x 9 = ________

9 x 2 = ________

Changing the grouping of factors does not change the product.

(2x9) x 3 = ________

2 x (3x9) = ________
Multiplication and Geometry

Here is an array showing 2 x 9. Is it a square number? Yes No

```
••••••••
••••••••
```

Draw an array or picture proving that the algorithm 10 x 10 = 100.

```
1 rows of 6 + 1 rows of 8 = 14

××××××× + ×××××××× = ×××××××××××××××
```

Which multiplication sentence could be used for this picture?

```
________ x _______ = ________
```

10 x 75 = ________

What happens to the place value of the digits in the number 23 when it is multiplied by ten?

```
_______________________________________________________
```

© 2004 Lara Dean
This picture of a ____________ is an example of a:

a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:

a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.

//, **, //, **, _____, _____, _____

Is it a growing pattern or a repeating pattern? ________________

The Commutative Property states that changing the order of factors does not change the product.

6 x 8 = ________
8 x 6 = ________

Changing the grouping of factors does not change the product.

(8x6) x 2 = ________
2 x (8x6) = ________
Here is an array showing 7 x 3. Is it a square number? Yes No

Draw an array or picture proving that the algorithm 12 x 12 = 144.

4 rows of 3 + 4 rows of 3 = 24

Which multiplication sentence could be used for this picture?

_______ x _______ = ________

10 x 100 = ________

What happens to the place value of the digits in the number 100 when it is multiplied by ten?

This picture of a ____________ is an example of a:

a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:

a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.

3, 33, 333, 3333, __________, __________, __________

Is it a growing pattern or a repeating pattern? ________________

The **Commutative Property** states that changing the order of factors does not change the **product**.

5 x 8 = __________

8 x 5 = __________

Changing the grouping of factors does not change the product.

(5x8) x 2 = __________

2 x (8x5) = __________
Here is an array made of 9 dots. Is 9 a square number? Yes No

Draw an array or picture proving that the algorithm $12 \times 8 = 96$.

2 rows of 6 + 2 rows of 4 = 40

\[
\begin{array}{ccc}
\times\times\times\times\times & \times\times\times & \times\times\times\times\times\times\times\times\times \\
\times\times\times\times\times & + & \times\times\times & = & \times\times\times\times\times\times\times\times\times
\end{array}
\]

Which multiplication sentence could be used for this picture?

\[
\underline{_____} \times \underline{_____} = \underline{_______}
\]

$10 \times 23 = \underline{______}$

What happens to the place value of the digits in the number 23 when it is multiplied by ten?

__

© 2004 Lara Dean
This shape is an example of a:

a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:

a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.

9, 12, 15, 18, _____, _____, _____

Is it a growing pattern or a repeating pattern? ________________

The Commutative Property states that changing the order of factors does not change the product.

9 x 8 = ________
8 x 9 = ________

Changing the grouping of factors does not change the product.

(4x3) x 5 = ________
5 x (3x4) = ________
Multiplication and Geometry

Here is an array made of 12 dots. Is it a square number? Yes No

Draw an array or picture proving that the algorithm 4 x 2 = 8.

4 rows of 10 + 4 rows of 4 = 40

\[\begin{align*}
\times & + \times \\
\times & \times \\
\times & = \times \\
\times & \times
\end{align*} \]

Which multiplication sentence could be used for this picture?

\[\underline{\text{______}} \times \underline{\text{______}} = \underline{\text{_______}} \]

10 x 250 = _________

What happens to the place value of the digits in the number 23 when it is multiplied by ten? ________________________________

© 2004 Lara Dean
This picture of a ______________ is an example of a:

a) cone
b) cube
c) cylinder
d) rectangular prism

This net is for:

a) a cylinder
b) a cone
c) a cube
d) a rectangular prism

Extend the pattern below.

9, 18, 27, 36, _____, _____, _____

Is it a growing pattern or a repeating pattern? ______________

The Commutative Property states that changing the order of factors does not change the product.

3 x 4 = ________
4 x 3 = ________

Changing the grouping of factors does not change the product.

(2x3) x 4 = ________
2 x (3x4) = ________
Multiplication and Geometry

Find the following products:

\[
\begin{align*}
24 \times 5 & \quad 64 \times 7 & \quad 857 \times 4
\end{align*}
\]

Compare these two expressions using < > or =

\[
7 \times 2 \quad \bigcirc \quad 4 \times 3
\]

\[
\square + \square = 8 \quad \text{and} \quad \square = 4
\]

Rewrite the equation by replacing the variable with the correct number.

\[
\square + \square = 8
\]

100 \times 54 = _______

What happens to the place value of the number 54 when it is multiplied by one hundred?

Write the word small or large to compare the numbers.

22 is ________________ compared to 1, 000

97 is ________________ compared to 6
Judy had 4 boxes of markers and there were 12 markers in each box. How many were there in all?

Choose the number sentence that shows how to solve the problem.

a) 12 - 4 = 8
b) 12 + 4 = 16
c) 12 x 4 = 48

Write a multiplication story for the equation 4 x 4 = 16.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

50 is the same as: (When in doubt, work it out!)

a) 12 + 12
b) 20 x 2
c) 60 - 10

Solve this equation by making both expressions equal.

4 x \(\bigcirc \) = 10 x 2

(Hint--find the total of one side to help you figure out the other!)
Multiplication and Geometry

Find the following products:

\[
\begin{align*}
22 \times 5 & = 110 \\
33 \times 7 & = 231 \\
125 \times 4 & = 500
\end{align*}
\]

Compare these two expressions using < > or =

\[
5 \times 3 \quad \bigcirc \quad 6 \times 2
\]

\[
\square + \square = 10 \quad \text{and} \quad \square = 5
\]

Rewrite the equation by replacing the variable with the correct number.

100 \times 36 = _________

What happens to the place value of the number 36 when it is multiplied by one hundred?

Write the word small or large to compare the numbers.

800 is ________________ compared to 50

97 is ________________ compared to 1,000

© 2004 Lara Dean
Cal had three 6-packs of soda for his class party. How many sodas were there in all?

Choose the number sentence that shows how to solve the problem.

a) $6 - 3 = 3$

b) $6 + 3 = 9$

c) $6 \times 3 = 18$

Write a multiplication story for the equation $3 \times 5 = 15$.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

25 is the same as: (When in doubt, work it out!)

a) $12 + 12$

b) $20 + 10$

c) $30 - 5$

Solve this equation by making both expressions equal.

$4 \times \boxed{} = 8 \times 2$

(Hint--find the total of one side to help you figure out the other!)

© 2004 Lara Dean
Multiplication and Geometry

Find the following products:

\[
\begin{align*}
57 \times 2 & \quad 68 \times 3 & \quad 357 \times 4
\end{align*}
\]

Compare these two expressions using < > or =

\[
4 \times 4 \quad \bigcirc \quad 5 \times 3
\]

\[
\square \times \square = 16 \quad \text{and} \quad \square = 4
\]

Rewrite the equation by replacing the variable with the correct number.

100 \times 18 = _

What happens to the place value of the number 18 when it is multiplied by one hundred?

Write the word small or large to compare the numbers.

100 is _________________ compared to 1,000
900 is _________________ compared to 200

© 2004 Lara Dean
A teacher had 35 math books for her class. She gave 5 to another teacher. How many did she have left?

Choose the number sentence that shows how to solve the problem.

a) 35 - 5 = 30
b) 35 + 5 = 40
c) 35 x 5 = 175

Write a multiplication story for the equation 4 x 10 = 40.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

24 is the same as: (When in doubt, work it out!)

a) 12 + 10
b) 40 - 20
c) 2 x 12

Solve this equation by making both expressions equal.

5 x □ = 15 x 2

(Hint--find the total of one side to help you figure out the other!)
Multiplication and Geometry

Find the following products:

\[
\begin{array}{ccc}
42 & \times 2 & 86 & \times 5 & 753 & \times 8
\end{array}
\]

Compare these two expressions using < > or =

\[
3 \times 4 \quad \text{and} \quad 4 \times 3
\]

\[
\square - \square = 0 \quad \text{and} \quad \square = 4
\]

Rewrite the equation by replacing the variable with the correct number.

\[
\text{__________}
\]

100 \times 20 = \underline{_______}

What happens to the place value of the number 20 when it is multiplied by one hundred?

\[
\underline{\text{___}}
\]

Write the word small or large to compare the numbers.

20 is \underline{_______________} compared to 1

20 is \underline{_______________} compared to 600
Twenty students returned their homework. Seven more did it at recess. How many students got in done altogether?

Choose the number sentence that shows how to solve the problem.

a) $20 - 7 = 13$

b) $20 + 7 = 27$

c) $20 \times 7 = 140$

Write a multiplication story for the equation $2 \times 3 = 6$.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

36 is the same as: (When in doubt, work it out!)

a) $12 + 24$

b) $40 - 6$

c) 6×7

Solve this equation by making both expressions equal.

$8 \times \bigcirc = 4 \times 10$

(Hint--find the total of one side to help you figure out the other!)
Multiplication and Geometry

Find the following products:

\[
\begin{align*}
12 & \times 3 \\
45 & \times 6 \\
789 & \times 4 \\
\end{align*}
\]

Compare these two expressions using < > or =

\[
10 \times 2 \hspace{1cm} 4 \times 5
\]

\[
\square + \square = 24 \quad \text{and} \quad \square = 12
\]

Rewrite the equation by replacing the variable with the correct number.

100 \times 15 = _________

What happens to the place value of the number 15 when it is multiplied by one hundred?

Write the word small or large to compare the numbers.

70 is _________________ compared to 700
70 is _________________ compared to 7
There were 26 students in a second grade class. Three were home sick. How many were at school?

Choose the number sentence that shows how to solve the problem.

a) 26 - 3 = 23
b) 26 + 3 = 29
c) 26 x 3 = 78

Write a multiplication story for the equation 2 x 12 = 24.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

________________ ____________ ____________ ____________

50 is the same as: (When in doubt, work it out!)

a) 25 pennies
b) 5 nickels
c) 5 dimes

Solve this equation by making both expressions equal.

5 x □ = 25 x 2
(Hint--find the total of one side to help you figure out the other!)

© 2004 Lara Dean
Name________________ December Concepts Review (Month 4) #6

Multiplication and Geometry

Find the following **products**:

<table>
<thead>
<tr>
<th>47</th>
<th>58</th>
<th>369</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 1</td>
<td>x 2</td>
<td>x 3</td>
</tr>
</tbody>
</table>

Compare these two **expressions** using < > or =

6 x 7 [] 5 x 9

□ x □ = 25 and □ = 5

Rewrite the equation by replacing the variable with the correct number.

100 x 80 = _________

What happens to the place value of the number 54 when it is multiplied by one hundred? ________________________________

Write the word **small** or **large** to compare the numbers.

1 is ________________ compared to 10

10 is ________________ compared to 2
The first grade classes have 35 girls and 42 boys. How many children are there in all?

Choose the number sentence that shows how to solve the problem.

a) $42 - 35 = 7$

b) $42 + 35 = 77$

c) $42 \times 35 = 1,470$

Write a multiplication story for the equation $3 \times 4 = 12$,

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

\[\square \quad \square \quad \square \quad \square \]

100 is the same as: (When in doubt, work it out!)

a) $25 + 25$

b) 10×10

c) $100 - 10$

Solve this equation by making both expressions equal.

$4 \times \square = 6 \times 6$

(Hint--find the total of one side to help you figure out the other!)
Multiplication and Geometry

Find the following products:

\[
\begin{align*}
12 & \times 3 \\
45 & \times 6 \\
789 & \times 9
\end{align*}
\]

Compare these two expressions using < > or =

\[
5 \times 6 \quad \bigcirc \quad 4 \times 7
\]

\[
\square - \square = 0 \quad \text{and} \quad \square = 25
\]

Rewrite the equation by replacing the variable with the correct number.

\[
100 \times 25 = ___
\]

What happens to the place value of the number 54 when it is multiplied by one hundred?

Write the word small or large to compare the numbers.

\[
25 \text{ is } __________\text{ compared to 100}
\]

\[
100 \text{ is } ______\text{ compared to 2,500}
\]
There were 8 white cars in the parking lot, and 3 red cars. How many more white cars were there?

Choose the number sentence that shows how to solve the problem.

a) 8 - 3 = 5
b) 8 + 3 = 11
c) 8 x 3 = 24

Write a multiplication story for the equation 9 x 2 = 18.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

_________ ___________ ___________ ___________

30 is the same as: (When in doubt, work it out!)

a) 6 pennies
b) 6 nickels
c) 6 dimes

Solve this equation by making both expressions equal.

12 x [] = 6 x 4

(Hint—find the total of one side to help you figure out the other!)

© 2004 Lara Dean
Name_________________ December Concepts Review (Month 4) #8

Multiplication and Geometry

Find the following products:

\[
\begin{align*}
52 & \times 5 \\
63 & \times 6 \\
741 & \times 4
\end{align*}
\]

Compare these two expressions using < > or =

\[
9 \times 2 \quad \bigcirc \quad 3 \times 8
\]

\[
\square + \square = 100 \quad \text{and} \quad \square = 50
\]

Rewrite the equation by replacing the variable with the correct number.

\[
\begin{align*}
\square + \square = 100 \quad \text{and} \quad \square = 50
\end{align*}
\]

100 \times 50 = ________

What happens to the place value of the number 50 when it is multiplied by one hundred?

Write the word small or large to compare the numbers.

50 is ____________ compared to 5

50 is ____________ compared to 500
Jaz had 3 packs of gum. Each pack had 12 pieces. How many were there in all?

Choose the number sentence that shows how to solve the problem.

a) 12 - 3 = 9
b) 12 + 3 = 15
c) 12 x 3 = 36

Write a multiplication story for the equation 24 x 1 = 24.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

_________________ ___________________ ___________________ ___________________

34 is the same as: (When in doubt, work it out!)

a) 14 + 16
b) 6 + 6
c) 40 - 6

Solve this equation by making both expressions equal.

13 x □ = 1 x 26

(Hint--find the total of one side to help you figure out the other!)
Name______________ December Concepts Review (Month 4) #9

Multiplication and Geometry

Find the following products:

\[
\begin{align*}
86 \times 5 & \quad 75 \times 7 & \quad 309 \times 4
\end{align*}
\]

Compare these two expressions using < > or =

\[
6 \times 3 \quad \bigcirc \quad 3 \times 4
\]

\[
\square \times \square = 36 \quad \text{and} \quad \square = 6
\]

Rewrite the equation by replacing the variable with the correct number.

\[

\]

100 \times 36 = _________

What happens to the place value of the number 54 when it is multiplied by one hundred?

Write the word small or large to compare the numbers.

36 is ________________ compared to 3

36 is ________________ compared to 360
One class had 17 5th graders and 8 4th graders. How many total students is that?

Choose the number sentence that shows how to solve the problem.

a) 17 - 8 = 9
b) 17 + 8 = 25
c) 17 x 8 = 136

Write a multiplication story for the equation 6 x 2 = 12.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

___________ ____________ ____________ ____________

28 is the same as: (When in doubt, work it out!)

a) 12 + 16
b) 40 - 16
c) 16 x 2

Solve this equation by making both expressions equal.

10 x □ = 50 x 2

(Hint--find the total of one side to help you figure out the other!)
Name______________ December Concepts Review (Month 4) #10

Multiplication and Geometry

Find the following products:

\[
\begin{array}{ccc}
12 & 45 & 987 \\
x 3 & x 6 & x 5
\end{array}
\]

Compare these two expressions using < > or =

\[
8 \times 1 \quad \bigcirc \quad 5 \times 2
\]

\[
\square - \square = 0 \quad \text{and} \quad \square = 100
\]

Rewrite the equation by replacing the variable with the correct number.

100 \times 99 = ________

What happens to the place value of the number 54 when it is multiplied by one hundred?______________________________

Write the word small or large to compare the numbers.

99 is ________________ compared to 9
99 is ________________ compared to 999

© 2004 Lara Dean
Jens had 20 big teeth and 4 baby teeth. How many teeth did he have in all?

Choose the number sentence that shows how to solve the problem.

a) $12 - 4 = 8$

b) $12 + 4 = 16$

c) $12 \times 4 = 48$

Write a multiplication story for the equation $10 \times 3 = 30$.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

____________ ____________ ____________ ____________

16 is the same as:

a) $12 + 5$

b) 4×3

c) $22 - 6$

Solve this equation by making both expressions equal.

$$10 \times \bigcirc = 4 \times 25$$

(Hint--find the total of one side to help you figure out the other!)
Multiplication and Geometry

Find the following products:

25 \times 5 \\
58 \times 7 \\
825 \times 4

Compare these two expressions using < > or =

6 \times 8 \quad \bigcirc \quad 7 \times 9

\square + \square = 30 \quad \text{and} \quad \square = 15

Rewrite the equation by replacing the variable with the correct number.

100 \times 10 = ________

What happens to the place value of the number 10 when it is multiplied by one hundred? ______________________________

Write the word small or large to compare the numbers.

10 is ________________ compared to 1, 000
10 is ________________ compared to 1

© 2004 Lara Dean
There were two mother pigs at the fair. Each of them had eight piglets.

How many piglets is that altogether?

Choose the number sentence that shows how to solve the problem.

a) $8 - 2 = 6$

b) $8 + 2 = 10$

c) $8 \times 2 = 16$

Write a multiplication story for the equation $4 \times 25 = 100$.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

17 is the same as: (When in doubt, work it out!)

a) $8 + 9$

b) 4×4

c) $23 - 7$

Solve this equation by making both expressions equal.

$4 \times \bigcirc = 8 \times 5$

(Hint--find the total of one side to help you figure out the other!)
Find the following **products**:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>76</td>
<td>543</td>
</tr>
<tr>
<td>x 2</td>
<td>x 1</td>
<td>x 0</td>
</tr>
</tbody>
</table>

Compare these two **expressions** using < > or =

\[8 \times 8 \quad \bigcirc \quad 7 \times 9 \]

\[\square \times \square = 64 \quad \text{and} \quad \square = 8 \]

Rewrite the equation by replacing the variable with the correct number.

100 \times 64 = _________

What happens to the place value of the number 64 when it is multiplied by one hundred?

__

__

Write the word **small** or **large** to compare the numbers.

50 is _________________ compared to 1, 000
100 is _________________ compared to 25

© 2004 Lara Dean
At recess the third graders score 17 points at soccer. The fourth graders scored 14 points. How many more points did the third graders get?

Choose the number sentence that shows how to solve the problem.

a) $17 - 14 = 3$

b) $14 + 17 = 31$

c) $17 \times 14 = 238$

Write a multiplication story for the equation $3 \times 5 = 15$.

Label the following quadrilaterals with the words rectangle, rhombus, trapezoid, or square.

33 is the same as: (When in doubt, work it out!)

a) $12 + 21$

b) 4×8

c) $40 - 6$

Solve this equation by making both expressions equal.

$$5 \times \bigcirc = 10 \times 6$$

(Hint--find the total of one side to help you figure out the other!)

© 2004 Lara Dean
Division

Use the flowers below to help you solve the division problem.

\[\begin{array}{cccccccccccc}
\Box & \Box \\
\end{array} \]

24 ÷ 3 = ______

Write a division problem that has a dividend of 20 and a divisor of 4. Then find the answer.

What is the remainder? ______

Sam made 12 cookies for 6 of his friends.

How many did each person get?

Choose the number sentence that shows how to solve the problem.

a) 12 - 6 = 6
b) 12 + 6 = 18
c) 12 ÷ 6 = 2

Write a story problem for the following equation:

14 ÷ 2 = 7
Compare these two expressions using < > or =

12 ÷ 3

12 ÷ 2

Solve this equation by making both expressions equal.

15 ÷ = 10 ÷ 2

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations. Use the digits in this fact family to make 4 equations that are related.

6, 30, 5

_____ x _____ = _____

_____ ÷ _____ = _____

_____ x _____ = _____

_____ ÷ _____ = _____

What fraction is shaded?

(Use 2, 3, 4, 5, 6, 8, 10 as denominators)

Compare these two fractions using < > or =.

\[
\frac{4}{5} \quad \quad \quad \quad \quad \quad \quad \quad \quad \frac{5}{5}
\]

© 2004 Lara Dean
Division

Use the flowers below to help you solve the division problem.

\[\begin{array}{ccccccc}
\ast & \ast & \ast & \ast & \ast & \ast & \ast \\
\end{array} \]

8 ÷ 2 = ______

Write a division problem that has a dividend of 30 and a divisor of 6. Then find the answer.

What is the remainder? ______

There are 60 students in the first grade and 3 classes. How many students are in each class?

Choose the number sentence that shows how to solve the problem.

a) 60 - 3 = 57

b) 60 + 3 = 63

c) 60 ÷ 3 = 20

Write a story problem for the following equation:

6 ÷ 2 = 3
Compare these two expressions using < > or =

8 ÷ 2 ___ 4 ÷ 2

Solve this equation by making both expressions equal.

12 ÷ ___ = 8 ÷ 2

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations. Use the digits in this fact family to make 4 equations that are related.

9, 8, 72

_____ x _____ = _____

_____ ÷ _____ = _____

_____ x _____ = _____

_____ ÷ _____ = _____

What fraction is shaded?

Compare these two fractions using < > or =.

\[
\begin{array}{l}
\frac{8}{10} \quad \quad \quad \quad \quad \quad \quad \quad \frac{10}{10}
\end{array}
\]
Name_________________ January Concepts Review (Month 5) #3

Division

Use the flowers below to help you solve the division problem.

* *

20 ÷ 5 = ______

Write a division problem that has a dividend of 54 and a divisor of 9. Then find the answer.

What is the remainder?_______

The 4th grade class has 24 students. The students are giving reports in groups of 3. How many groups are there?

Choose the number sentence that shows how to solve the problem.

a) 24 - 3 = 21
b) 24 + 3 = 27
c) 24 ÷ 3 = 8

Write a story problem for the following equation:

4 ÷ 2 = 2
Compare these two expressions using < > or =

15 ÷ 3 \(\bigcirc\) 16 ÷ 4

Solve this equation by making both expressions equal.

27 ÷ \(\bigcirc\) = 9 ÷ 3

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations.
Use the digits in this fact family to make 4 equations that are related.

8, 10, 80

\[\begin{align*}
___ \times ___ &= ___ \\
___ \div ___ &= ___
\end{align*}\]

\[\begin{align*}
___ \times ___ &= ___ \\
___ \div ___ &= ___
\end{align*}\]

What fraction is shaded?

\[\frac{___}{___}\]

Compare these two fractions using < > or =.

\[\frac{___}{___} \bigcirc \frac{___}{___}\]

\[\frac{4}{6} \bigcirc \frac{2}{6}\]
Division

Use the flowers below to help you solve the division problem.

2÷2=_______

Write a division problem that has a dividend of 64 and a divisor of 8. Then find the answer.

What is the remainder?_______

There were 28 students in P.E. They needed two teams for the game that day. How many people were on each team?

Choose the number sentence that shows how to solve the problem.

a) 28 - 2 = 26
b) 28 + 2 = 30
c) 28 ÷ 2 = 14

Write a story problem for the following equation:

10 ÷ 2 = 5

© 2004 Lara Dean
Compare these two expressions using < > or =

\[12 \div 6 \quad \bigcirc \quad 14 \div 7 \]

Solve this equation by making both expressions equal.

\[12 \div \bigcirc = 16 \div 4 \]

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations. Use the digits in this fact family to make 4 equations that are related.

\[56, 7, 8 \]

\[\underline{} \times \underline{} = \underline{} \quad \underline{} \div \underline{} = \underline{} \]

\[\underline{} \times \underline{} = \underline{} \quad \underline{} \div \underline{} = \underline{} \]

What fraction is shaded?

\[\underline{} \]

Compare these two fractions using < > or =.

\[\frac{2}{6} \quad \bigcirc \quad \frac{2}{6} \]

© 2004 Lara Dean
Name________________ January Concepts Review (Month 5) #5

Division

Use the flowers below to help you solve the division problem.

* * * * * * * * * * * * * * * *

18 ÷ 6 = ______

Write a division problem that has a dividend of 49 and a divisor of 7. Then find the answer.

What is the remainder?_______

The 6th graders did a service learning project. They worked in groups of 4 to make scarves. If each group made 12 scarves, how many did each student make?

Choose the number sentence that shows how to solve the problem.

a) 12 - 4 = 8
b) 12 + 4 = 16
c) 12 ÷ 4 = 3

Write a story problem for the following equation:

12 ÷ 6 = 2
Compare these two expressions using < > or =

\[
\begin{align*}
20 \div 5 \ & \ & 20 \div 4
\end{align*}
\]

Solve this equation by making both expressions equal.

\[
12 \div \bigcirc = 27 \div 9
\]

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations. Use the digits in this fact family to make 4 equations that are related.

\[
\begin{align*}
7, 42, 6
\end{align*}
\]

\[
\begin{align*}
\bigcirc \times \bigcirc = \bigcirc & \quad \quad \quad \bigcirc \div \bigcirc = \bigcirc \\
\bigcirc \times \bigcirc = \bigcirc & \quad \quad \quad \bigcirc \div \bigcirc = \bigcirc
\end{align*}
\]

What fraction is shaded?

\[
\bigcirc
\]

Compare these two fractions using < > or =.

\[
\begin{align*}
\frac{3}{5} \ & \ & \frac{2}{5}
\end{align*}
\]
Division

Use the flowers below to help you solve the division problem.

• • • •

4 ÷ 2 = ______

Write a division problem that has a dividend of 48 and a divisor of 6. Then find the answer.

What is the remainder? ______

When Olivia cleaned her room she found 10 shoes. If she put them all back in their pairs, how many pairs did she have?

Choose the number sentence that shows how to solve the problem.

a) 10 - 2 = 8
b) 10 + 2 = 12
c) 10 ÷ 2 = 5

Write a story problem for the following equation:

2 ÷ 2 = 1
Compare these two expressions using < > or =

\[
\frac{30}{6} \quad \bigcirc \quad \frac{25}{5}
\]

Solve this equation by making both expressions equal.

\[
24 \div \bigcirc = 42 \div 7
\]

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations.
Use the digits in this fact family to make 4 equations that are related.

\[
6, \ 54, \ 9
\]

_____ x _____ = ____

_____ ÷ _____ = _____

_____ x _____ = ____

_____ ÷ _____ = _____

What fraction is shaded?

\[
\frac{3}{4}
\]

Compare these two fractions using < > or =

\[
\frac{4}{8} \quad \bigcirc \quad \frac{2}{8}
\]
Division

Use the flowers below to help you solve the division problem.

```
* * * * * * * * * * * * * * * *
```

18 ÷ 9 = ______

Write a division problem that has a dividend of 40 and a divisor of 5. Then find the answer.

What is the remainder? ______

Maria had two children. At Halloween, she made 2 super hero costumes. How many costumes did she make for each child?

Choose the number sentence that shows how to solve the problem.

a) 2 - 2 = 0
b) 2 + 2 = 4
c) 2 ÷ 2 = 1

Write a story problem for the following equation:

8 ÷ 4 = 2
Compare these two expressions using < > or =

\[50 \div 10 \quad \bigcirc \quad 25 \div 5 \]

Solve this equation by making both expressions equal.

\[21 \div \bigcirc = 18 \div 6 \]

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations. Use the digits in this fact family to make 4 equations that are related.

4, 6, 24

\[\underline{\text{_____ x _____ = _____}} \quad \underline{\text{_____ ÷ _____ = _____}} \]
\[\underline{\text{_____ x _____ = _____}} \quad \underline{\text{_____ ÷ _____ = _____}} \]

What fraction is shaded?

\[\underline{\text{________}} \]

Compare these two fractions using < > or =.

\[\frac{2}{4} \quad \bigcirc \quad \frac{1}{4} \]
Use the flowers below to help you solve the division problem.

6 ÷ 3 = ________

Write a division problem that has a dividend of 32 and a divisor of 4. Then find the answer.

What is the remainder? ________

There were 4 students who won a reading contest. They got to share an 8 piece pizza. How many slices did they each get?

Choose the number sentence that shows how to solve the problem.

a) 8 - 4 = 2
b) 8 + 4 = 12
c) 8 ÷ 4 = 2

Write a story problem for the following equation:

12 ÷ 6 = 2
Compare these two expressions using < > or =

\[56 \div 8 \quad \bigcirc \quad 16 \div 2 \]

Solve this equation by making both expressions equal.

\[18 \div \bigcirc = 81 \div 9 \]

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations. Use the digits in this fact family to make 4 equations that are related.

\[
\begin{align*}
\text{2, 9, 18} \\
\text{\bigcirc \quad \times \quad \bigcirc = \bigcirc} \\
\text{\bigcirc \quad \times \quad \bigcirc = \bigcirc} \\
\end{align*}
\]

What fraction is shaded?

Compare these two fractions using < > or =.

\[
\begin{align*}
\frac{2}{2} & \quad \bigcirc \quad \frac{1}{2} \\
\end{align*}
\]
Division

Use the flowers below to help you solve the division problem.

\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \]

10 ÷ 5 = _______

Write a division problem that has a dividend of 27 and a divisor of 3. Then find the answer.

What is the remainder? _______

Jack and Jill carried 4 buckets of water up the hill. If they both carried the same number, how many did each of them carry?

Choose the number sentence that shows how to solve the problem.

a) 4 - 2 = 2
b) 4 + 2 = 6
c) 4 ÷ 2 = 2

Write a story problem for the following equation:

16 ÷ 4 = 4
Compare these two expressions using < > or =

\[42 \div 6 \quad \bigcirc \quad 36 \div 6 \]

Solve this equation by making both expressions equal.

\[14 \div \bigcirc = 49 \div 7 \]

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations. Use the digits in this fact family to make 4 equations that are related.

\[10, 90, 9 \]

\[\bigcirc \times \bigcirc = \bigcirc \quad \bigcirc \div \bigcirc = \bigcirc \]

\[\bigcirc \times \bigcirc = \bigcirc \quad \bigcirc \div \bigcirc = \bigcirc \]

What fraction is shaded?

\[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \]

Compare these two fractions using < > or =.

\[\frac{1}{3} \quad \bigcirc \quad \frac{1}{3} \]
Division

Use the flowers below to help you solve the division problem.

12 ÷ 6 = _______

Write a division problem that has a dividend of 63 and a divisor of 9. Then find the answer.

What is the remainder? _______

The 6th grade classes went to the mountains to help plant trees.

If 27 trees were planted, how many did each class plant?

Choose the number sentence that shows how to solve the problem.

a) 27 - 3 = 24
b) 27 + 3 = 30
c) 27 ÷ 3 = 9

Write a story problem for the following equation:

18 ÷ 3 = 6
Compare these two expressions using < > or =

15 ÷ 3
48 ÷ 8

Solve this equation by making both expressions equal.

45 ÷ = 63 ÷ 7

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations. Use the digits in this fact family to make 4 equations that are related.

3, 21, 7

____ x _____ = _____
_____ ÷ _____ = _____

_____ x _____ = _____
_____ ÷ _____ = _____

What fraction is shaded?

Compare these two fractions using < > or =.

\[
\begin{array}{c}
\frac{4}{8} \\
\frac{2}{8}
\end{array}
\]
Division

Use the flowers below to help you solve the division problem.

* * * * * * * * * * * *

14 ÷ 7 = _______

Write a division problem that has a dividend of 72 and a divisor of 8. Then find the answer.

What is the remainder? _______

The after school program made $30 washing the teachers’ cars. If they made $3 for each car, how many did they wash?

Choose the number sentence that shows how to solve the problem.

a) 30 - 3 = 27
b) 30 + 3 = 33
c) 30 ÷ 3 = 10

Write a story problem for the following equation:

12 ÷ 2 = 6
Compare these two expressions using < > or =

\[
5 \div 1 \quad \bigcirc \quad 45 \div 9
\]

Solve this equation by making both expressions equal.

\[
30 \div \bigcirc = 35 \div 7
\]

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations. Use the digits in this fact family to make 4 equations that are related.

\[
2, 6, 3
\]

\[
\begin{align*}
\text{_____} \times \text{_____} &= \text{_____} \\
\text{_____} \div \text{_____} &= \text{_____}
\end{align*}
\]

What fraction is shaded?

\[
\begin{array}{c|c|c|c}
\hline
\text{_____} & \text{_____} & \text{_____} & \text{_____} \\
\hline
\end{array}
\]

Compare these two fractions using < > or =.

\[
\begin{array}{c|c|c|c}
\hline
\text{\textfrac{1}{10}} & \bigcirc & \text{\textfrac{3}{10}} \\
\hline
\end{array}
\]

© 2004 Lara Dean
Name______________ January Concepts Review (Month 5) #12

Division

Use the flowers below to help you solve the division problem.

18 ÷ 6 = _______

Write a division problem that has a dividend of 42 and a divisor of 7. Then find the answer.

What is the remainder?_______

Sam spent $12 on raffle tickets for the school carnival. If each ticket was $2, how many tickets did he buy?
Choose the number sentence that shows how to solve the problem.

a) 12 - 2 = 10
b) 12 + 2 = 14
c) 12 ÷ 2 = 6

Write a story problem for the following equation:

12 ÷ 4 = 3
Compare these two expressions using < > or =

\[50 \div 5 \] \[\Box \] \[81 \div 9 \]

Solve this equation by making both expressions equal.

\[24 \div \Box = 64 \div 8 \]

(Hint--find the total of one side to help you figure out the other!)

Multiplication and division are also inverse operations.
Use the digits in this fact family to make 4 equations that are related.

\[6, 9, 54 \]

\[\Box \times \Box = \Box \]
\[\Box \div \Box = \Box \]
\[\Box \times \Box = \Box \]
\[\Box \div \Box = \Box \]

What fraction is shaded?

\[\underline{\frac{\Box}{\Box}} \]

Compare these two fractions using < > or =.

\[\frac{3}{4} \] \[\Box \] \[\frac{2}{4} \]
The picture below could be described by saying 1/2 of the flowers are white. What is another equivalent fraction that could also describe the picture?

How do you write three and five tenths?

a) 35
b) 3.5
c) .35

How do you read .6?

a) six
b) six and ten
c) six tenths

Write the decimal for 7/10.

Put the decimals .7, .2, and .5 in order from the least to the greatest.

_______ _______ _______
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when it is almost time for school to end, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

_______________ ° Fahrenheit
Division

The picture below could be described by saying 1/4 of the flowers are white. What is another equivalent fraction that could also describe the picture?

How do you write two and four tenths?
a) 24
b) .24
c) 2.4

How do you read .1?
a) one
b) one cent
c) one tenth

Write the decimal for 5/10.

Put the decimals .3, .2, and .9 in order from the least to the greatest.

© 2004 Lara Dean
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock at night when you are sleeping, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

________________ ° Farhenheit
The picture below could be described by saying 1/3 of the flowers are white. What is another equivalent fraction that could also describe the picture?

1/3

How do you write seven and four tenths?
a) 7.410
b) 7.4
c) 74.10

How do you read .3?
a) three tenths
b) three thirds
c) three cents

Write the decimal for 1/10.

Put the decimals .3, .1, and .5 in order from the least to the greatest.

.1 .3 .5
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when the video store opens, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

________________ ° Farhenheit
Division

The picture below could be described by saying \(\frac{1}{2} \) of the oval is white. What is another equivalent fraction that could also describe the picture?

\[
\text{__________}
\]

How do you write eighteen and one tenth?

a) 18.1

b) .181

c) 1.81

How do you read 1.5?

a) fifteen

b) one and five tenths

c) one and five hundredths

Write the decimal for 7 and \(\frac{7}{10} \).

Put the decimals 1.7, 2.2, and 1.5 in order from the least to the greatest.

\[
\text{__________ _________ __________}
\]
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when you eat lunch, what time is it? Include A.M. or P.M. in your answer.

What is the **temperature** in on this **thermometer**?

________________ ° Farhenheit
The picture below could be described by saying 1/3 of the hexagon is black. What is another equivalent fraction that could also describe the picture?

How do you write twelve and two tenths?
a) 12.2
b) 1.22
c) 12.210

How do you read 25.2?
a) twenty-five and two tenths
b) two hundred fifty-two
c) two hundred and fifty-two

Write the decimal for 6 4/10.

Put the decimals 3.1, 3.7, and 3.5 in order from the least to the greatest.
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when children can watch cartoons after school, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

________________ ° Farhenheit
Name_________________ February Concepts Review (Month 6) #6

Division

The picture below could be described by saying 1/4 of the arrows are black. What is another **equivalent** fraction that could also describe the picture?

![Arrows](image)

How do you **write** thirty-three and three tenths?

a) 3.33
b) 33.3
c) .33

How do you **read** 44.4?

a) four hundred forty-four
b) four hundred and forty-four
c) forty-four and four tenths

Write the **decimal** for 77 and 7/10.

Put the decimals 36.1, 35.7, and 34.5 **in order** from the **least** to the **greatest**.

__________ __________ __________
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when you wake up for school, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

________________ ° Fahrenheit
The picture below could be described by saying 1/2 of the stars are white. What is another equivalent fraction that could also describe the picture?

How do you write nine and nine tenths?
a) 9.9
b) 9.910
c) 9.10

How do you read 36.6?
a) thirty-six and six cents
b) three hundred and sixty-six
c) thirty-six and six tenths

Write the decimal for 82 and 2/10.

Put the decimals 7.7, 9.2, and 1.5 in order from the least to the greatest.
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when it is almost time for bed, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

____________________ ° Fahrenheit
The picture below could be described by saying 1/3 of the diamonds are white. What is another equivalent fraction that could also describe the picture?

\[\frac{1}{3} \]

How do you write nineteen and one tenth?

a) 191
b) 19.1
c) 1.91

How do you read 101.1?

a) one hundred and one tenths
b) one thousand and eleven tenths
c) one hundred one and one tenth

Write the decimal for 9/10.

Put the decimals 9.9, 8.3, and 9.7 in order from the least to the greatest.

\[\underline{8.3} \quad \underline{9.7} \quad \underline{9.9} \]
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when the evening news is on, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

________________ ° Fahrenheit
Division

The picture below could be described by saying 1/4 of the scissors are white. What is another equivalent fraction that could also describe the picture?

✂️✂️✂️✂️
✂️✂️✂️✂️
✂️✂️✂️✂️
✂️✄✄✄✄

How do you write two hundred ten and one tenth?

a) 2101
b) 210.1
c) 210.10

How do you read 26.2?

a) twenty-six and two tenths
b) twenty-six and two hundredths
c) two hundred and sixty-two

Write the decimal for 54 and 5/10.

Put the decimals 80.2, 82.2, and 82.0 in order from the least to the greatest.
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when a new day is about to start, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

__________________ ° Fahrenheit
The picture below could be described by saying 1/2 of the flowers are white. What is another equivalent fraction that could also describe the picture?

How do you write seventeen and seven tenths?

a) 17.1
b) 17.7
c) 17.17

How do you read 98.7?

a) ninety-eight sevenths
b) ninety-eight and seven sevenths
c) ninety-eight and seven tenths

Write the decimal for 76 and 7/10.

Put the decimals 98.1, 94.9, and 92.5 in order from the least to the greatest.
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when it is time for fireworks to start, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

______________ ° Fahrenheit
The picture below could be described by saying 1/3 of the design is black. What is another equivalent fraction that could also describe the picture?

\[
\begin{align*}
\&\quad \star \quad \star \quad \star \\
\&\quad \star \quad \star \quad \star \\
\&\quad \star \quad \star \quad \star
\end{align*}
\]

How do you write ninety-eight and five tenths?

a) 985

b) 98.5

c) 9.85

How do you read 107.5?

a) one hundred seven and five tenths

b) one hundred seven and five fifths

c) one thousand seventy-five

Write the decimal for 255 and 5/10.

Put the decimals 88.7, 88.2, and 88.5 in order from the least to the greatest.

_________ ___________ ___________
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when you can go to open plunge at the swimming pool, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

______________ ° Fahrenheit
The design below could be described by saying 1/4 of the pattern is not made of polygons. What is another equivalent fraction that could also describe the design?

\[\square \, \bigtriangleup \, \bullet \, \blacksquare \]

\[\bigtriangleup \, \bullet \, \blacksquare \, \square \]

\[\bullet \, \blacksquare \, \square \, \bigtriangleup \]

How do you write six and two tenths?

a) 6.2
b) 62.0
c) 6.02

How do you read 6.9?

a) six dollars and nine cents
b) six and ten ninths
c) six and nine tenths

Write the decimal for 24 and 4/10.

Put the decimals 2.8, 8.2, and 28.2 in order from the least to the greatest.

\[\underline{\text{__________}} \quad \underline{\text{__________}} \quad \underline{\text{__________}} \]
The time between midnight and twelve noon is called A.M. The time after twelve noon to midnight is called P.M. If this is the time on the clock when it is almost time for a movie to start at the theater, what time is it? Include A.M. or P.M. in your answer.

What is the temperature in on this thermometer?

_____________ ° Fahrenheit
Measurement

How much is this worth? Write your answer in decimal notation.

Sara went to the store to buy some gloves. They cost her $5.27. If she paid for them with a twenty-dollar bill, how much money did she get back?

Find and draw two different lines of symmetry on this polygon.

This shape has been moved with a:

a) translation (slide)

b) a reflection (flip)
Measurement Chart…Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles</td>
<td>milliliters</td>
<td>millimeters</td>
<td>pints</td>
<td>pounds</td>
<td>quarts</td>
<td>inches</td>
<td>yards</td>
</tr>
</tbody>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) A stamp is…
 - about an inch tall
 - about a foot tall

2) A penny is about…
 - two millimeters wide
 - two centimeters wide

3) A bowl of soup is…
 - about a pint
 - about a gallon

4) You can buy a soda that is…
 - one milliliter
 - one liter
Measurement

How much is this worth? Write your answer in decimal notation.

Kami bought some sunglasses for $12.57. She gave the saleswoman fifteen dollars. How much change did she get back?

Find and draw two different lines of symmetry on this polygon.

This shape has been moved with a:

a) translation (slide)

b) a reflection (flip)
Measurement Chart…Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles</td>
<td>milliliters</td>
<td>millimeters</td>
<td>pints</td>
<td>pounds</td>
<td>quarts</td>
<td>inches</td>
<td>yards</td>
</tr>
</tbody>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) A worm is ... **about 5 feet** **about 5 inches**

2) A glass of juice would best be measured in... **milliliters** **cups**

3) The length of a city would best be measured in ... **centimeters** **miles**

4) There are bugs that are... **one milliliter** **one millimeter**

© 2004 Lara Dean
Measurement

How much is this worth? Write your answer in **decimal notation**.

Jackson bought a basketball to take to school. It was on sale for $14.98. If he paid for it with a twenty-dollar bill, how much change did he get back?

Find and draw a line of symmetry on this polygon.

This shape has been moved with a:

a) **translation (slide)**

b) a **reflection (flip)**
Measurement Chart…Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles</td>
<td>milliliters</td>
<td>millimeters</td>
<td>pints</td>
<td>pounds</td>
<td>quarts</td>
<td>inches</td>
<td>yards</td>
</tr>
</tbody>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) A pail of water holds…
 - 2 quarts
 - 2 milliliters

2) A math paper can be measured in …
 - yards
 - inches

3) A one-dollar bill weighs…
 - about one pound
 - about one gram

4) You can buy a bottle of juice that is…
 - one meter
 - one liter
Measurement

How much is this worth? Write your answer in decimal notation.

Nadia bought some lotion for $4.98 and some lipgloss for $6.50. She gave the sales clerk $12. How much money did she get back?

Find and draw two different lines of symmetry on this polygon.

This shape has been moved with a:

a) translation (slide)

b) a reflection (flip)
Measurement Chart…Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
<th>miles</th>
<th>milliliters</th>
<th>millimeters</th>
<th>pints</th>
<th>pounds</th>
<th>quarts</th>
<th>inches</th>
<th>yards</th>
</tr>
</thead>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) A football field is… **100 inches** **100 yards**

2) A paperclip is… **about one millimeter thick** **about one meter thick**

3) A bagel is about… **100 grams** **100 kilograms**

4) A tear can be measured in… **milliliters** **liters**
Measurement

How much is this worth? Write your answer in decimal notation.

Jenny bought a curling iron for $10.89 and a brush for $4.78. If she gave the sales clerk a twenty-dollar bill, how much change did she get back?

Find and draw two different lines of symmetry on this polygon.

This shape has been moved with a:

a) translation (slide)

b) a reflection (flip)
Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
<th>miles</th>
<th>milliliters</th>
<th>millimeters</th>
<th>pints</th>
<th>pounds</th>
<th>quarts</th>
<th>inches</th>
<th>yards</th>
</tr>
</thead>
</table>

We measure **length** in:
Customary Metric

We measure **capacity** in:
Customary Metric

We measure **weight** in:
Customary Metric

Finish the statements below by circling the best answers.

1) A dime weighs about…
- two grams
- two pounds

2) A penny is about…
- 20 millimeters
- 20 centimeters

3) A kitchen garbage can holds about…
- 40 milliliters
- 40 liters

4) The length of a piece of popped corn is…
- one inch
- one foot

© 2004 Lara Dean
Measurement

How much is this worth? Write your answer in decimal notation.

Edith got her mom some flowers for her birthday. They were $8.99 for the bunch. She gave the checker a ten-dollar bill. How much change did she get back?

Find and draw a line of symmetry on this polygon.

This shape has been moved with a:

a) translation (slide)

b) a reflection (flip)
Measurement Chart…Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
<th>miles</th>
<th>milliliters</th>
<th>millimeters</th>
<th>pints</th>
<th>pounds</th>
<th>quarts</th>
<th>inches</th>
<th>yards</th>
</tr>
</thead>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) A man’s shoe is… about an inch long about a foot long

2) A bag of marbles is about… one gram one pound

3) A breath mint is about… one gram one pound

4) A carton of ice cream is measured in… milliliters gallons
Measurement

How much is this worth? Write your answer in decimal notation.

Edgar got a remote control car on sale for $17.99. If he paid for it with a twenty-dollar bill, how much money did he get back?

Find and draw two different lines of symmetry on this polygon.

This shape has been moved with a:

a) translation (slide)

b) a reflection (flip)
Measurement Chart…Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
<th>miles</th>
<th>milliliters</th>
<th>millimeters</th>
<th>pints</th>
<th>pounds</th>
<th>quarts</th>
<th>inches</th>
<th>yards</th>
</tr>
</thead>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
<th>Customary</th>
<th>Metric</th>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) A piece of corn is about… **an inch** **a centimeter**

2) There are 12 inches in… **one foot** **one yard**

3) There are three feet in… **one meter** **one yard**

4) It takes about 20 minutes to walk… **one meter** **one kilometer**

© 2004 Lara Dean
How much is this worth? Write your answer in decimal notation.

Carie got a piggy bank to keep her change in. It cost $6.43. If she gave the clerk seven dollars, how much change did she get back to put in the piggy bank?

Find and draw two different lines of symmetry on this polygon.

This shape has been moved with a:

a) **translation (slide)**

b) a **reflection (flip)**
Measurement Chart…Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
<th>miles</th>
<th>milliliters</th>
<th>millimeters</th>
<th>pints</th>
<th>pounds</th>
<th>quarts</th>
<th>inches</th>
<th>yards</th>
</tr>
</thead>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) You measure a pencil in…
 - centimeters
 - cups

2) You can buy milk that comes in…
 - feet
 - gallons

3) You can measure the weight of a paperclip in…
 - grams
 - kilograms

4) You can measure the school playground in…
 - liters
 - meters
How much is this worth? Write your answer in **decimal notation**.

Yessica bought a book to read over the weekend. It cost her $6.54. If she paid with a ten-dollar bill, how much change did she get back?

Find and draw a line of symmetry on this polygon.

This shape has been moved with a:

a) **translation (slide)**

b) a **reflection (flip)**
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles</td>
<td>milliliters</td>
<td>millimeters</td>
<td>pints</td>
<td>pounds</td>
<td>quarts</td>
<td>inches</td>
<td>yards</td>
</tr>
</tbody>
</table>

We measure **length** in:

- Customary: __________
- Metric: __________

We measure **capacity** in:

- Customary: __________
- Metric: __________

We measure **weight** in:

- Customary: __________
- Metric: __________

Finish the statements below by circling the best answers.

1) The metric measurement closest to yards is... millimeters meters
2) An inch is bigger than a... centimeter meter
3) A pint is less than... a cup a quart
4) A person who weighs 80 pounds is also... 36 grams 36 kilograms
Measurement

How much is this worth? Write your answer in decimal notation.

Luis bought a sports drink and a snack bar to eat after his soccer game. Together they cost $2.67. If he paid with a five-dollar bill, how much money did he have left?

Find and draw two different lines of symmetry on this polygon.

This shape has been moved with a:

a) translation (slide)

b) a reflection (flip)
Measurement Chart…Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles</td>
<td>milliliters</td>
<td>millimeters</td>
<td>pints</td>
<td>pounds</td>
<td>quarts</td>
<td>inches</td>
<td>yards</td>
</tr>
</tbody>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) You can measure distances in… **miles** **milliliters**

2) The length of small things can be measured in… **millimeters** **pints**

3) The weight of a child can be measured in… **pounds** **quarts**

4) The height of a soda can could be measured in… **inches** **yards**
Measurement

How much is this worth? Write your answer in **decimal notation**.

Emir bought a new back pack for school. It cost $17.83. If he paid with a $20, how much money did he get back?

Find and draw two different lines of symmetry on this polygon.

This shape has been moved with a:

a) **translation** (slide)

b) a **reflection** (flip)
Measurement Chart…Ways of Measuring

Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
<th>miles</th>
<th>milliliters</th>
<th>millimeters</th>
<th>pints</th>
<th>pounds</th>
<th>quarts</th>
<th>inches</th>
<th>yards</th>
</tr>
</thead>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>_________</td>
<td>_______</td>
</tr>
<tr>
<td>_________</td>
<td>_______</td>
</tr>
<tr>
<td>_________</td>
<td>_______</td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>_________</td>
<td>_______</td>
</tr>
<tr>
<td>_________</td>
<td>_______</td>
</tr>
<tr>
<td>_________</td>
<td>_______</td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>_________</td>
<td>_______</td>
</tr>
<tr>
<td>_________</td>
<td>_______</td>
</tr>
<tr>
<td>_________</td>
<td>_______</td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) A candy that is 1 centimeter is… **10 millimeters**
2) A 1 liter bottle of soda is about… **4 cups**
3) A 10 pound bag of sugar is about… **4.5 grams**
4) One gallon is the same as… **8 cups**

© 2004 Lara Dean
Measurement

How much is this worth? Write your answer in **decimal notation**.

Lejune got a new lock for his bicycle. It cost him $11.65. If he paid for it with a twenty-dollar bill, how much money did he get back?

Find and draw two different lines of symmetry on this polygon.

This shape has been moved with a:

a) translation (slide)

b) a reflection (flip)
Fill in the blanks with the correct words.

<table>
<thead>
<tr>
<th>centimeters</th>
<th>cups</th>
<th>feet</th>
<th>gallons</th>
<th>grams</th>
<th>kilograms</th>
<th>liters</th>
<th>meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles</td>
<td>milliliters</td>
<td>millimeters</td>
<td>pints</td>
<td>pounds</td>
<td>quarts</td>
<td>inches</td>
<td>yards</td>
</tr>
</tbody>
</table>

We measure **length** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **capacity** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We measure **weight** in:

<table>
<thead>
<tr>
<th>Customary</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish the statements below by circling the best answers.

1) A pint is the same as...
 - two cups
 - two quarts

2) A quart is the same as...
 - two cups
 - four cups

3) A quart is the same as...
 - two cups
 - two pints

4) A gallon is the same as...
 - four pints
 - four quarts
If you roll a number cube that has the numbers 1, 2, 3, 4, 5, and 6, what is the probability that you will roll an odd number?

a) 1/6
b) 2/6
c) 3/6

Graphs show data that has been collected in answer to a question.
The person who made this graph asked, "What kind of chocolate is your favorite...white chocolate, light chocolate, or dark chocolate?"

1) Which chocolate do most people like the best? _________________
2) About how many people voted for white chocolate? _____________
3) About **how many more** people voted for light chocolate than dark chocolate? ________________________________
Now it's your turn to ask at least ten people the question--
"What kind of chocolate is your favorite…white chocolate, light chocolate, or dark chocolate?"

Record the answers on a tally chart.

Finally, create a bar graph to represent the data you collect.

<table>
<thead>
<tr>
<th>Tally Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Chocolate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Favorite Chocolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kind of Chocolate</td>
</tr>
<tr>
<td>Number of Votes</td>
</tr>
</tbody>
</table>
The third grade is collecting milk caps to earn money for their class. If they have 13 red milk caps, 7 blue milk caps, and 15 green milk caps, what color of milk cap would you probably get if you reached in and took one out?

Data

Tables show data that has been collected in answer to a question.

The person who made this table asked, "What is the high temperature supposed to be for the next five days?"

<table>
<thead>
<tr>
<th>Day of the Week</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>67°</td>
</tr>
<tr>
<td>Tuesday</td>
<td>72°</td>
</tr>
<tr>
<td>Wednesday</td>
<td>77°</td>
</tr>
<tr>
<td>Thursday</td>
<td>74°</td>
</tr>
<tr>
<td>Friday</td>
<td>72°</td>
</tr>
</tbody>
</table>

1) Which day is expected to be the warmest? ______________________

2) Which two days are expected to be 72°? ______________________

3) About **how much warmer** will it be on Wednesday than on Monday? ______________________
● Now it's your turn to find out what the high temperature will be over the next five days.
● You can look in a newspaper, look on the internet (weather.com), or watch the weather report on the local news.
● Write down the source (which newspaper, news program, or internet site) of your information.
● Finally, create a table to represent the data you find.

My source of information for our 5 day forecast was ___________

___.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The third grade is collecting milk caps to earn money for their class. If they have 3 red milk caps, 7 blue milk caps, and 5 green milk caps. What is the probability of getting a blue milk cap if you reach in and take one out without looking?

a) 1/3
b) 1/5
c) 1/7
d) 1/15

Graphs show data that has been collected in answer to a question.
The person who made this graph asked, "Is it true that if I read the same page in a book four times, it will get faster each time?"

1) About how many words did this person read on the 1st try?______
2) About how many words did this person read on the 3rd try?______
3) About **how many more** words did this person read on the fourth try than on the first try? _______
Now it’s your turn to try this!

- Find a partner, a clock or watch with a second hand, and a book to read. You should be able to read the words, but it shouldn't be too easy.
- Have your partner time your reading for one minute. Count the number of words you were able to read in one minute.
- Reread the same passage three more times. Remember to count how many words you were able to read each time.
- Keep track of how many words you read each time on the chart below.
- Finally, create a line graph to represent the data about your reading.

<table>
<thead>
<tr>
<th>1st Try</th>
<th>2nd Try</th>
<th>3rd Try</th>
<th>4th Try</th>
</tr>
</thead>
</table>

Reading Rate

<table>
<thead>
<tr>
<th>Number of Words Per Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Did your reading improve from the first time to the last? ____________
Data

This spinner is divided into three equal parts. If you spin the spinner, what is the probability that it will land on one?

a) 1/4
b) 2/4
c) 3/4

Graphs show data that has been collected in answer to a question.
The teacher who made this graph asked, "What grade should I give Lara in math?"

<table>
<thead>
<tr>
<th>Math Test Scores in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>x x x x x</td>
</tr>
<tr>
<td>x x x x x x x x</td>
</tr>
<tr>
<td>x x x x x x x x x x</td>
</tr>
</tbody>
</table>

67 89 90 91 92 93 94 95 96

1) Circle the test scores that are clustered together.
2) Cross out the test score that is the outlier.
3) The test scores that are clustered together fall within an eight point range. What range is the range? ______% to ______%
Now it's your turn look at some test results!

- The fourth graders got the following grades on their multiplication tests: 87, 88, 87, 84, 86, 85, 58, 90, 91, 92, 93, 94, 90, 84, 84, 87, 89, 88, 91, 92, 90, 87, 85, 90, 91, and 87
- Record their scores on a line plot graph.
- Circle the cluster.
- What score is the outlier? _______

Do you think the teacher did a good job teaching her students how to multiply? _______

Why? (Support your answer using information on the line plot graph).

__

__
This spinner is divided into three unequal parts. If you spin the spinner, what color will it probably land on? ________________

Data

Graphs show data that has been collected in answer to a question.
The person who made this graph asked, "How much colored paper do we have in the cabinet?"

1) What color of paper is there the most of? _________________________
2) What color of paper is there the least of? _________________________
3) **How much more** red paper is there than green paper? _________________________
Now it's your turn to ask at least ten people the question--
"What color of paper is your favorite to use in an art project?"
Record the answers on a tally chart.
Finally, create a bar graph to represent the data you collect.
There are 24 students in the third grade classroom. Their names are on popsicle sticks that their teacher keeps in a cup. If the teacher takes out one name to have that person answer a question, what are the chances of Carol's name being chosen?

a) 1/24
b) 2/24
c) 12/24

Tables show data that has been collected in answer to a question.
The person who made this table asked, "How many candy bars did each grade sell for the fundraiser?"

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Candy Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Grade</td>
<td>450</td>
</tr>
<tr>
<td>2nd Grade</td>
<td>675</td>
</tr>
<tr>
<td>3rd Grade</td>
<td>770</td>
</tr>
<tr>
<td>4th Grade</td>
<td>852</td>
</tr>
<tr>
<td>5th Grade</td>
<td>904</td>
</tr>
<tr>
<td>6th Grade</td>
<td>673</td>
</tr>
</tbody>
</table>

1) Which grade sold the most candy bars?______________________

2) Which two grades sold between 600 and 700 candy bars?______

3) How many candy bars did the 1st graders sell?________________
Now it's your turn to make a table from the following information.

Lincoln Elementary sold coupon books for their fundraiser. The first graders sold 85 books, the second graders sold 74 books, the third graders sold 124 books, the fourth graders sold 290 books, the fifth graders sold 890 books, and the sixth graders sold 659 books.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>85</td>
</tr>
<tr>
<td>2nd</td>
<td>74</td>
</tr>
<tr>
<td>3rd</td>
<td>124</td>
</tr>
<tr>
<td>4th</td>
<td>290</td>
</tr>
<tr>
<td>5th</td>
<td>890</td>
</tr>
<tr>
<td>6th</td>
<td>659</td>
</tr>
</tbody>
</table>

1) Which grade sold the most candy bars?________________________
2) Which two grades sold less than 100 candy bars?______
3) How many candy bars did the 3rd graders sell?_______________
What is the probability that you will get heads?

a) $\frac{1}{2}$
b) $\frac{1}{3}$
c) $\frac{1}{4}$

- Graphs show data that has been collected in answer to a question.
- The person who made this graph asked, "How does the amount of homework being turned in change during the week?"

1) On which day did more students return their homework? ________
2) How many students turned in their homework on Tuesday?______
3) How many more students turned in their homework on Wednesday than on Tuesday? ____________________________

© 2004 Lara Dean
Now it's your turn to try this!

- Find a clock or a watch that will help you to keep track of the hour.
- Keep track of how many times you wash your hands each hour on the chart below.
- Finally, create a line graph to represent the data about your hand washing habits.

Tally Chart

<table>
<thead>
<tr>
<th>Time</th>
<th>5:00-6:00</th>
<th>6:00-7:00</th>
<th>7:00-8:00</th>
<th>8:00-9:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Times Washed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Did you wash your hands more during a certain hour? __________
Why or why not?__
Two hundred thirty-six people bought raffle tickets at the school carnival. If the principal pulled out one ticket for the grand prize, what would each person's probability of winning the grand prize be?

Graphs show data that has been collected in answer to a question.
The teacher who made this graph asked, "How much Halloween candy did each student get trick-or-treating?"

<table>
<thead>
<tr>
<th>Number of Candies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>151</td>
</tr>
<tr>
<td>152</td>
</tr>
<tr>
<td>153</td>
</tr>
<tr>
<td>154</td>
</tr>
<tr>
<td>211</td>
</tr>
</tbody>
</table>

1) Circle the test scores that are clustered together.
2) Cross out the numbers that are the outliers.
3) What is the difference between the number of candies of the student who had the most and the student who had the least.
Now it’s your turn to plot some information!
- The first graders had less candy in their bags because they got tired faster and went home earlier than the older students. In one class the students collected these amounts of candy 100, 99, 248, 97, 99, 96, 99, 100, 101, 101, 101, 101, 98, 97, 97, 96, 97, 101, 100, 99, 97.
- Record their scores on a line plot graph.
- Circle the cluster.
- What amount of candies is the outlier? ________

1) Do you think you had more or less candy than these students when you went trick-or-treating earlier this year? _______

2) Can we tell what kind of candy the children like best from this line plot? Why or why not?__

Data
There are 52 cards in a deck of cards (if you don't count the Jokers). There are 4 of each number card and 13 of each suit. If you reach in and take a card without looking, what is the probability it will have hearts on it?

a) 1/52
b) 4/52
c) 13/52

● Graphs show data that has been collected in answer to a question.
● The teacher who made this graph asked, "What kind of fruit would most students want me to bring to the class party?"

1) Which fruit is liked by the most people?_________________
2) How many people voted for bananas?_____________
3) How many more people voted for apples than pears? __________

© 2004 Lara Dean
Now it's your turn to ask at least ten people the question—
"What kind of fruit is your favorite... bananas, apples, or pears?"
Record the answers on a tally chart.
Finally, create a bar graph to represent the data you collect.
Data

There are 52 cards in a deck of cards (if you don't count the Jokers). There are 4 of number card and 13 of each suit. If you reach in and take a card without looking, what is the probability it will be the Queen of Hearts?

a) 1/52
b) 4/52
c) 13/52

Tables show data that has been collected in answer to a question.
The person who made this table asked, "How many students in my class chose to eat peanut butter sandwiches for lunch?"

<table>
<thead>
<tr>
<th>Day of the Week</th>
<th># of Sandwiches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>3</td>
</tr>
<tr>
<td>Tuesday</td>
<td>12</td>
</tr>
<tr>
<td>Wednesday</td>
<td>5</td>
</tr>
<tr>
<td>Thursday</td>
<td>8</td>
</tr>
<tr>
<td>Friday</td>
<td>6</td>
</tr>
</tbody>
</table>

1) On which day did the most kids choose peanut butter? ___________
2) On which 2 days were an odd number of sandwiches eaten? ____________ and ____________
Now it's your turn to make a chart about how many students chose to drink chocolate milk at lunch.

Read the following data:
On Monday 17 students drank chocolate milk. On Tuesday and Thursday 20 students drank chocolate milk. On Wednesday 15 students chose chocolate milk, and on Friday 25 students chose chocolate milk.

Finally, create a table to represent the data.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) How many more students chose chocolate milk on Friday than on Monday?

2) On which day did the most students choose chocolate milk?
 __________ Why do you think that is? ________________

© 2004 Lara Dean
Christena had two $1 bills, four $5 bills, two $10 bills, and one $20 bill in her wallet. If she reaches in and takes one out without looking, which will she probably get?

Graphs show data that has been collected in answer to a question.
The person who made this graph asked, "How does a child's weight change over time?"

1) During which year do most children weigh seventy pounds?_______
2) During which to years do children weigh between thirty and forty pounds?_____________
3) About how much do children weigh when they are seven years old?_______________
Now it’s your turn to try this!
• Look at the following information about the average height of children are from when they are one year old to when they are ten years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height in Inches</td>
<td>30</td>
<td>34</td>
<td>37</td>
<td>41</td>
<td>43</td>
<td>46</td>
<td>48</td>
<td>50</td>
<td>52</td>
<td>54</td>
</tr>
</tbody>
</table>

• Create a line graph to represent the data and show how it changes over time.

1) How did you figure out which numbers to use on the graph to show how many inches a child is?_______________________________
__

2) What is the average height for children your age?______________
Data

If you roll a number cube that has the numbers 1, 2, 3, 4, 5, and 6, what is the probability that you will roll a number less than three?

a) 1/6
b) 2/6
c) 3/6

● Graphs show data that has been collected in answer to a question.
● The teacher who made this graph asked, "What number will we get most if we roll a number cube 25 times?"

<table>
<thead>
<tr>
<th>Number Rolled</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

1) Circle the numbers that have clusters.
2) Cross out the number that is the outlier.
3) Why do you think they only rolled a one once? __________________________

Now it's your turn to plot some information!

- Put a penny, a nickel, a dime, and a quarter in a box or bag—anything that you can't see through.
- Reach in and take out the first coin you touch (don't feel around or peek!).
- Do this 25 times and plot the information as you go.

1) Did you pull out one coin more often than the other coins?_______
2) Why do you think you did (or why you didn't)?_________________

3) Were there clusters or outliers on your line plot?______________
4) Why do you think you did (or why you didn't) have them?_______
